We propose an automatic parameter selection strategy for the problem of image super-resolution for images corrupted by blur and additive white Gaussian noise with unknown standard deviation. The proposed approach exploits the structure of both the down-sampling and the blur operators in the frequency domain and computes the optimal regularisation parameter as the one optimising a suitable residual whiteness measure. Computationally, the proposed strategy relies on the fast solution of generalised Tikhonov $\ell_2$-$\ell_2$ problems as proposed in a work from Zhao et al. These problems naturally appear as substeps of the Alternating Direction Method of Multipliers (ADMM) optimisation approach used to solve super-resolution problems with non-quadratic and often non-smooth, sparsity-promoting regularisers both in convex and in non-convex regimes. After detailing the theoretical properties defined in the frequency domain which allow to express the whiteness functional in a compact way, we report an exhaustive list of numerical experiments proving the effectiveness of the proposed approach for different type of problems, in comparison with well-known parameter selection strategy such as, e.g., the discrepancy principle.
翻译:对于被模糊和添加的白色高斯噪音损坏且标准偏差不明的图像,我们建议对图像超分辨率问题采用自动参数选择战略。拟议方法利用频率域下取样和模糊操作器的结构,将优化常规化参数作为适当的残余白色测量的最佳方法。计算后,拟议战略依赖于普遍化的Tikhonov $\ ell_2$-$- ell_2$2$2美元问题的快速解决方案。这些问题自然会成为倍增效应调方向方法(ADMMM)的子步骤。这些问题是用来解决非夸大和往往是非粘糊状的超分辨率问题的最佳常规化参数。拟议战略在 convex 和非convex 系统中都采用。在详细列出频域界定的理论属性以便用紧凑的方式表达白度功能之后,我们报告一个详尽的数字实验清单,以证明拟议方法对不同类型问题的有效性,例如差异度、已知的参数等。