In this paper, we study the problem of secure ML inference against a malicious client and a semi-trusted server such that the client only learns the inference output while the server learns nothing. This problem is first formulated by Lehmkuhl \textit{et al.} with a solution (MUSE, Usenix Security'21), whose performance is then substantially improved by Chandran et al.'s work (SIMC, USENIX Security'22). However, there still exists a nontrivial gap in these efforts towards practicality, giving the challenges of overhead reduction and secure inference acceleration in an all-round way. We propose SIMC 2.0, which complies with the underlying structure of SIMC, but significantly optimizes both the linear and non-linear layers of the model. Specifically, (1) we design a new coding method for homomorphic parallel computation between matrices and vectors. It is custom-built through the insight into the complementarity between cryptographic primitives in SIMC. As a result, it can minimize the number of rotation operations incurred in the calculation process, which is very computationally expensive compared to other homomorphic operations e.g., addition, multiplication). (2) We reduce the size of the garbled circuit (GC) (used to calculate nonlinear activation functions, e.g., ReLU) in SIMC by about two thirds. Then, we design an alternative lightweight protocol to perform tasks that are originally allocated to the expensive GCs. Compared with SIMC, our experiments show that SIMC 2.0 achieves a significant speedup by up to $17.4\times $ for linear layer computation, and at least $1.3\times$ reduction of both the computation and communication overheads in the implementation of non-linear layers under different data dimensions. Meanwhile, SIMC 2.0 demonstrates an encouraging runtime boost by $2.3\sim 4.3\times$ over SIMC on different state-of-the-art ML models.


翻译:在本文中,我们研究的是针对恶意客户和半信任服务器的安全 ML 推断问题,这样客户只能学习推论输出,而服务器却一无所获。 这个问题首先由 Lehmkuhl \ textit{et al.} 以一个解决方案( MUSE, Usenix Security' 21) 提出, Chandran 等人的工作( SIMC, USENIX Security 22) 大大改善了其性能。 然而, 这些努力在实用性方面还存在非边际差距, 使得管理减少和安全推论速度加快。 我们提议 SIMC 2.0, 它符合 SIMC 的基本结构, 但大大优化了模型的线性和非线性层 。 具体地说, 我们设计了一个新的编码方法, 用于Chandrandern et al- al- al- al- serveral 计算, 由SISMC 的对调控性原始原始原始的原始数据进行量。 结果, 它可以最大限度地减少在计算过程中进行的轮值操作数量, 而不是计算中, 我们的顺序的计算, 。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月2日
Asynchronous speedup in decentralized optimization
Arxiv
0+阅读 · 2022年9月1日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员