Manipulating articulated objects requires multiple robot arms in general. It is challenging to enable multiple robot arms to collaboratively complete manipulation tasks on articulated objects. In this paper, we present $\textbf{V-MAO}$, a framework for learning multi-arm manipulation of articulated objects. Our framework includes a variational generative model that learns contact point distribution over object rigid parts for each robot arm. The training signal is obtained from interaction with the simulation environment which is enabled by planning and a novel formulation of object-centric control for articulated objects. We deploy our framework in a customized MuJoCo simulation environment and demonstrate that our framework achieves a high success rate on six different objects and two different robots. We also show that generative modeling can effectively learn the contact point distribution on articulated objects.
翻译:操作显示的物体一般需要多个机器人臂。 使多个机器人臂能够合作完成对指定物体的操作任务, 具有挑战性。 在本文中, 我们展示了 $\ textbf{V- MAO}$, 用于学习对指定物体的多武器操作的框架。 我们的框架包括一个变异基因模型, 用于学习对每个机器人臂的物体僵硬部件的接触点分布。 培训信号来自与模拟环境的互动, 该模拟环境通过规划和对指定物体的以物体为中心的控制进行新配方来实现。 我们在一个定制的 MuJoCo 模拟环境中部署我们的框架, 并展示我们的框架在六个不同的物体和两个不同的机器人上取得了很高的成功率。 我们还显示, 基因模型可以有效地学习对指定物体的联络点分布。