The rapid expansion of data worldwide invites the need for more distributed solutions in order to apply machine learning on a much wider scale. The resultant distributed learning systems can have various degrees of centralization. In this work, we demonstrate our solution FLoBC for building a generic decentralized federated learning system using blockchain technology, accommodating any machine learning model that is compatible with gradient descent optimization. We present our system design comprising the two decentralized actors: trainer and validator, alongside our methodology for ensuring reliable and efficient operation of said system. Finally, we utilize FLoBC as an experimental sandbox to compare and contrast the effects of trainer-to-validator ratio, reward-penalty policy, and model synchronization schemes on the overall system performance, ultimately showing by example that a decentralized federated learning system is indeed a feasible alternative to more centralized architectures.
翻译:世界各地的数据迅速扩展,需要更加分散的解决方案,以便更广泛地应用机器学习。由此形成的分布式学习系统可以具有不同程度的集中化。在这项工作中,我们展示了我们的解决办法FLABC, 即利用链链技术建立一个通用的分散式联合学习系统,容纳任何与梯度下降优化相容的机械学习模式。我们介绍了由两个分散式行为者组成的系统设计:培训员和验证师,以及我们确保上述系统可靠和高效运行的方法。最后,我们利用FLABC作为实验沙箱,比较和对比培训师与鉴定师比率、奖励-惩罚政策以及模式同步计划对整个系统绩效的影响,最终通过实例表明,分散式联合式学习系统确实是更集中式结构的可行替代办法。