Consider a $3$-uniform hypergraph of order $n$ with clique number $k$ such that the intersection of all its $k$-cliques is empty. Szemer\'edi and Petruska proved $n\leq 8m^2+3m$, for fixed $m=n-k$, and they conjectured the sharp bound $n \leq {m+2 \choose 2}$. This problem is known to be equivalent to determining the maximum order of a $\tau$-critical $3$-uniform hypergraph with transversal number $m$ (details may also be found in a companion paper: arXiv:2204.02859). The best known bound, $n\leq \frac{3}{4}m^2+m+1$, was obtained by Tuza using the machinery of $\tau$-critical hypergraphs. Here we propose an alternative approach, a combination of the iterative decomposition process introduced by Szemer\'edi and Petruska with the skew version of Bollob\'as's theorem on set pair systems. The new approach improves the bound to $n\leq {m+2 \choose 2} + O(m^{{5}/{3}})$, resolving the conjecture asymptotically.
翻译:考虑一个 $3 un un un un uniform supergy $ 美元和 cluquen $ k$ 。 Szemer\'edi 和 Petruska 证明$n\leq 8m2+3m3$, 固定美元=n- k$, 他们推测了 $\leq {m+2\ choose 2$ 。 这个问题已知相当于 确定 $\ tau- 临界 $ 3$ - 3un- un frontiphy 和 traversal $( laxiv: 2204. 02859 和 Petruska 证明$nleq leq $ 830美元, 最著名的绑定 $nleq = franc {3\% 4}m+m 1$。 由 Tuza 使用 $taual $- crontial yprography.