We present a relocalization pipeline, which combines an absolute pose regression (APR) network with a novel view synthesis based direct matching module, offering superior accuracy while maintaining low inference time. Our contribution is twofold: i) we design a direct matching module that supplies a photometric supervision signal to refine the pose regression network via differentiable rendering; ii) we modify the rotation representation from the classical quaternion to SO(3) in pose regression, removing the need for balancing rotation and translation loss terms. As a result, our network Direct-PoseNet achieves state-of-the-art performance among all other single-image APR methods on the 7-Scenes benchmark and the LLFF dataset.
翻译:我们提出一个重新定位管道,将绝对构成回归(ARPR)网络与基于新颖观点的综合综合直接匹配模块结合起来,在保持低推论时间的同时提供较高的准确性,我们的贡献是双重的:一)我们设计一个直接匹配模块,提供光度监督信号,通过不同的制式改进形状回归网络;二)我们将传统四面形的轮换代表制修改为SO(3),形成回归制,从而消除了平衡轮换和翻译损失条件的需要;因此,我们的网络直接-PoseNet在7-Scenes基准和LLFF数据集方面,除了所有其他单一模型式的同行审议方法之外,取得了最新业绩。