Keratoconus is a severe eye disease that leads to deformation of the cornea. It impacts people aged 10-25 years and is the leading cause of blindness in that demography. Corneal topography is the gold standard for keratoconus diagnosis. It is a non-invasive process performed using expensive and bulky medical devices called corneal topographers. This makes it inaccessible to large populations, especially in the Global South. Low-cost smartphone-based corneal topographers, such as SmartKC, have been proposed to make keratoconus diagnosis accessible. Similar to medical-grade topographers, SmartKC outputs curvature heatmaps and quantitative metrics that need to be evaluated by doctors for keratoconus diagnosis. An automatic scheme for evaluation of these heatmaps and quantitative values can play a crucial role in screening keratoconus in areas where doctors are not available. In this work, we propose a dual-head convolutional neural network (CNN) for classifying keratoconus on the heatmaps generated by SmartKC. Since SmartKC is a new device and only had a small dataset (114 samples), we developed a 2-stage transfer learning strategy -- using historical data collected from a medical-grade topographer and a subset of SmartKC data -- to satisfactorily train our network. This, combined with our domain-specific data augmentations, achieved a sensitivity of 91.3% and a specificity of 94.2%.
翻译:Keratoconus是一种严重的眼病,导致角形畸形。它影响到10-25岁的人,是造成人口统计中失明的主要原因。角地形是卡纳托科努斯诊断的黄金标准。这是一个使用昂贵和大体积医疗设备进行的非侵入性过程,称为角形地形学家。这使得大量人口,特别是全球南部人口无法接受这种疾病。在这项工作中,我们提议建立一个名为SmartKC等低成本智能手机的角形制图师(SmartKC)等双头脑神经神经网络(CNN),用于在SmartKC所生成的热图上进行分类。类似于医学品级制图师,SmartKC输出的剖析调热色图和定量测量仪,需要由医生对卡纳托科努斯诊断。评估这些热谱和定量值的自动计划,可以在没有医生的地区对卡纳托科努斯进行筛查方面发挥关键作用。在这项工作中,我们建议建立一个双头脑神经网络(CNN),用于将卡纳科科诺科斯的心剖析图进行分类分析。SmartKC(SmarkKC)的升级系统只是从Sali-阶段数据转换了我们的一个最新版本数据样本,一个通过SmartKC的系统,只有级数据系统,只有一个历史级数据系统,只有了我们一个历史级数据系统,一个历史级数据库的系统,只有一级的数据。