Maximizing a submodular function is a fundamental task in machine learning and in this paper we study the deletion robust version of the problem under the classic matroids constraint. Here the goal is to extract a small size summary of the dataset that contains a high value independent set even after an adversary deleted some elements. We present constant-factor approximation algorithms, whose space complexity depends on the rank $k$ of the matroid and the number $d$ of deleted elements. In the centralized setting we present a $(4.597+O(\varepsilon))$-approximation algorithm with summary size $O( \frac{k+d}{\varepsilon^2}\log \frac{k}{\varepsilon})$ that is improved to a $(3.582+O(\varepsilon))$-approximation with $O(k + \frac{d}{\varepsilon^2}\log \frac{k}{\varepsilon})$ summary size when the objective is monotone. In the streaming setting we provide a $(9.435 + O(\varepsilon))$-approximation algorithm with summary size and memory $O(k + \frac{d}{\varepsilon^2}\log \frac{k}{\varepsilon})$; the approximation factor is then improved to $(5.582+O(\varepsilon))$ in the monotone case.
翻译:最大限度地增加一个子模块函数是机器学习的一项基本任务, 在本文中, 我们研究在经典的类固醇限制下, 将问题删除的稳健版本。 这里的目标是对数据集进行小缩略图, 数据集包含高值独立集, 即使对手删除了某些元素 。 我们提出恒定因素近似算法, 其空间复杂性取决于机器人的等级 $k$ 和删除元素的数值 。 在集中设置中, 当目标为单数时, 我们展示了$( 4.597+O (\ varepsilon) $- appromolog 算法 $ (\ frac{ k+d- vareprvalislon% 2) 。 在设置流序 + O. 935\\ varevlus 算法 大小时, 我们提供 $( slusqual) 和 O. 9qrus 等值的缩数 。