Graphical models are a key class of probabilistic models for studying the conditional independence structure of a set of random variables. Circular variables are special variables, characterized by periodicity, arising in several contexts and fields. However, models for studying the dependence/independence structure of circular variables are under-explored. This paper analyses three multivariate circular distributions, the von Mises, the Wrapped Normal and the Inverse Stereographic distributions, focusing on their properties concerning conditional independence. For each one of these distributions, we discuss the main properties related to conditional independence and introduce suitable classes of graphical models. The usefulness of the proposed models is shown by modelling the conditional independence among dihedral angles characterizing the three-dimensional structure of some proteins.
翻译:图形模型是研究一组随机变量有条件独立结构的概率模型的关键类别。循环变量是特殊变量,以周期性为特征,产生于若干背景和领域。然而,研究循环变量依赖性/独立性结构的模型探索不足。本文分析了三种多变量循环分布、 von Mises、 包形常态 和反向结构分布,重点是它们与有条件独立有关的特性。对于其中每一种分布,我们讨论与有条件独立有关的主要属性,并引入适当的图形模型类别。拟议模型的有用性表现为模拟某些蛋白质三维结构的三角角度之间的有条件独立。