Stochastic dynamic models have been extensively used for the description of processes with uncertainties arising in the operations research, behavioral sciences, and many other application areas. A large class of the problems from these domains is characterized by the necessity to deal with several distinct groups of populations, which are usually labeled as "active" and "passive". Motivated by important applications of queueing networks and neuroscience, the main focus of the present work is on the analysis of reflecting stochastic dynamics of such mixed populations. We develop a general mathematical modeling framework to describe the reflecting stochastic dynamics for active-passive populations. The analysis of this model is carried out via a combination of low- and high-delity results obtained from the solution of the underlying coupled system of SDEs and from the simulations with a statistical-mechanics-based lattice gas model, where we employ a kinetic Monte Carlo procedure. We provide details of the queueing theory and neuronal models and discuss a relationship between reflecting SDEs and a model of queueing theory via a limit theorem. Furthermore, we present several representative numerical examples, and discuss an intrinsic interconnection between active and passive particles in the underlying stochastic process. Finally, possible extensions of the proposed methodology have been highlighted.
翻译:在描述操作研究、行为科学和其他许多应用领域产生的不确定过程的过程中,广泛使用了托盘动态模型。这些领域的一大批问题特征是,必须处理若干不同的人口群体,通常被贴上“活性”和“被动性”标签。在排队网络和神经科学的重要应用的推动下,目前工作的主要重点是分析这些混合人群的随机动态。我们开发了一个一般数学模型框架,以描述主动被动性人群的反射随机动态。对模型的分析是结合从SDE基本组合系统的解决办法和模拟中取得的低度和高密度结果进行的。我们采用动态蒙特卡洛程序,我们主要侧重于分析排队理论和神经模型的细节,讨论反映SDE和通过限值排队理论模型之间的关系。此外,我们提出若干具有代表性的数字实例,并讨论了基于基于统计-机械气模型的模拟中产生的低度和高密度结果。我们采用了动态的蒙特卡洛程序。我们提供了排队理论和神经模型的细节,并讨论了反映SDE和通过限值排队理论模型之间的关系。我们提出了若干具有代表性的数值实例,并讨论了最后将主动和被动颗粒子的内在互连成的延伸方法。