Scattered data fitting is a frequently encountered problem for reconstructing an unknown function from given scattered data. Radial basis function (RBF) methods have proven to be highly useful to deal with this problem. We describe two quantum algorithms to efficiently fit scattered data based on globally and compactly supported RBFs respectively. For the globally supported RBF method, the core of the quantum algorithm relies on using coherent states to calculate the radial functions and a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion. A quadratic speedup is achieved in the number of data over the classical algorithms. For the compactly supported RBF method, we mainly use the HHL algorithm as a subroutine to design an efficient quantum procedure that runs in time logarithmic in the number of data, achieving an exponential improvement over the classical methods.


翻译:分层数据安装是从给定的分散数据重建未知函数时经常遇到的一个问题。 辐射基函数( RBF) 方法已证明对解决这一问题非常有用。 我们描述了两种量子算法, 以便有效地匹配分别基于全球和紧密支持的RBF的分散数据。 对于全球支持的 RBF 方法, 量子算法的核心依赖于使用一致的状态来计算辐射函数, 以及一种不偏向的矩阵推导技术来高效地进行矩阵反转。 在经典算法上的数据数量上实现了二次加速。 对于精细支持的 RBF 方法, 我们主要使用 HHL 算法作为子路程来设计一个高效量子程序, 在数据数量上运行时间对数, 实现对古典方法的指数改进 。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
27+阅读 · 2021年7月11日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
12+阅读 · 2019年12月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2022年2月21日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
27+阅读 · 2021年7月11日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
12+阅读 · 2019年12月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员