This work proposes a semi-parametric approach to estimate Covid-19 (SARS-CoV-2) evolution in Spain. Considering the sequences of 14 days cumulative incidence of all Spanish regions, it combines modern Deep Learning (DL) techniques for analyzing sequences with the usual Bayesian Poisson-Gamma model for counts. DL model provides a suitable description of observed sequences but no reliable uncertainty quantification around it can be obtained. To overcome this we use the prediction from DL as an expert elicitation of the expected number of counts along with their uncertainty and thus obtaining the posterior predictive distribution of counts in an orthodox Bayesian analysis using the well known Poisson-Gamma model. The overall resulting model allows us to either predict the future evolution of the sequences on all regions, as well as, estimating the consequences of eventual scenarios.
翻译:这项工作提出了一种半参数方法来估计西班牙的Covid-19(SARS-COV-2)的演变情况,考虑到西班牙所有区域累计发生14天的顺序,它把现代深学习(DL)分析序列的技术与通常的Bayesian Poisson-Gamma计数模型结合起来,DL模型对观察到的序列作了适当描述,但不能围绕它获得可靠的不确定性量化。为了克服这一点,我们用DL的预测作为专家,对预期的计数数量及其不确定性进行推断,从而利用众所周知的Poisson-Gamma模型,在正统的Bayesian分析中取得计数的后方预测分布,由此得出的总模型使我们能够预测所有区域序列的未来演变情况,并估计最终设想的后果。