A common approach to define convolutions on meshes is to interpret them as a graph and apply graph convolutional networks (GCNs). Such GCNs utilize isotropic kernels and are therefore insensitive to the relative orientation of vertices and thus to the geometry of the mesh as a whole. We propose Gauge Equivariant Mesh CNNs which generalize GCNs to apply anisotropic gauge equivariant kernels. Since the resulting features carry orientation information, we introduce a geometric message passing scheme defined by parallel transporting features over mesh edges. Our experiments validate the significantly improved expressivity of the proposed model over conventional GCNs and other methods.
翻译:一种常见的方法是将其定义为图解并应用图解卷动网络(GCNs),这些GCNs使用异热带内核,因此对脊椎的相对方向不敏感,因此对网状整体的几何学不敏感。我们提议Gauge Equivariant MeshCNN, 将GCNs笼统地应用于厌异测量等异性内核。由于由此产生的特征含有定向信息, 我们引入了由网状边缘平行运输特征界定的几何电文传递计划。我们的实验证实了拟议模型相对于常规GCNs和其他方法的清晰度大大提高。