We employ uncertain parametric CTMCs with parametric transition rates and a prior on the parameter values. The prior encodes uncertainty about the actual transition rates, while the parameters allow dependencies between transition rates. Sampling the parameter values from the prior distribution then yields a standard CTMC, for which we may compute relevant reachability probabilities. We provide a principled solution, based on a technique called scenario-optimization, to the following problem: From a finite set of parameter samples and a user-specified confidence level, compute prediction regions on the reachability probabilities. The prediction regions should (with high probability) contain the reachability probabilities of a CTMC induced by any additional sample. To boost the scalability of the approach, we employ standard abstraction techniques and adapt our methodology to support approximate reachability probabilities. Experiments with various well-known benchmarks show the applicability of the approach.


翻译:我们使用具有参数过渡率和参数值之前的不确定参数CTMC。 先前的编码编码了实际过渡率的不确定性, 而参数允许过渡率之间的依赖性。 从先前的分布中抽样参数值,然后得出一个标准的CTMC, 我们可以计算出相关的可实现性概率。 我们根据一种称为假设-优化的技术, 向下列问题提供了原则性解决办法: 从一组有限的参数样本和用户指定的信任度, 计算出对可实现性概率的预测区域。 预测区域应该( 高概率) 包含由任何其他样本引致的CTMC的可实现性概率。 为了提高该方法的可扩展性, 我们采用标准的抽象技术, 并调整我们的方法, 以支持近似可实现概率。 各种已知基准的实验显示了该方法的适用性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
60+阅读 · 2020年3月19日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月8日
Arxiv
0+阅读 · 2022年7月8日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员