The precise estimation of resource usage is a complex and challenging issue due to the high variability and dimensionality of heterogeneous service types and dynamic workloads. Over the last few years, the prediction of resource usage and traffic has received ample attention from the research community. Many machine learning-based workload forecasting models have been developed by exploiting their computational power and learning capabilities. This paper presents the first systematic survey cum performance analysis-based comparative study of diversified machine learning-driven cloud workload prediction models. The discussion initiates with the significance of predictive resource management followed by a schematic description, operational design, motivation, and challenges concerning these workload prediction models. Classification and taxonomy of different prediction approaches into five distinct categories are presented focusing on the theoretical concepts and mathematical functioning of the existing state-of-the-art workload prediction methods. The most prominent prediction approaches belonging to a distinct class of machine learning models are thoroughly surveyed and compared. All five classified machine learning-based workload prediction models are implemented on a common platform for systematic investigation and comparison using three distinct benchmark cloud workload traces via experimental analysis. The essential key performance indicators of state-of-the-art approaches are evaluated for comparison and the paper is concluded by discussing the trade-offs and notable remarks.


翻译:由于多种服务类型和动态工作量的多变性和多面性,对资源使用情况的精确估计是一个复杂和具有挑战性的问题。过去几年来,对资源使用和流量的预测得到了研究界的足够重视。许多基于机械学习的工作量预测模型是通过利用计算能力和学习能力开发的。本文件介绍了对多种机器学习驱动云工作量预测模型的首次系统调查和基于业绩分析的比较研究。讨论的出发点是预测资源管理的重要性,然后是预测性描述、业务设计、动机和关于这些工作量预测模型的挑战。对五种不同类别的不同预测方法的分类和分类,重点是现有最新工作量预测方法的理论概念和数学功能。属于不同类型机算模型的最突出的预测方法经过彻底调查和比较。所有五个基于机学的分类工作量预测模型都是在一个共同的平台上实施的,通过实验分析,利用三种不同的基准云工作量痕迹进行系统调查和比较。对最新方法的基本关键业绩指标进行了评估,以供比较,并通过讨论贸易观点和显著的论文来完成。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月25日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
18+阅读 · 2020年10月9日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员