In a sparse stochastic block model with two communities of unequal sizes we derive two posterior concentration inequalities, that imply (1) posterior (almost-)exact recovery of the community structure under sparsity bounds comparable to well-known sharp bounds in the planted bi-section model; (2) a construction of confidence sets for the community assignment from credible sets, with finite graph sizes. The latter enables exact frequentist uncertain quantification with Bayesian credible sets at non-asymptotic graph sizes, where posteriors can be simulated well. There turns out to be no proportionality between credible and confidence levels: for given edge probabilities and a desired confidence level, there exists a critical graph size where the required credible level drops sharply from close to one to close to zero. At such graph sizes the frequentist decides to include not most of the posterior support for the construction of his confidence set, but only a small subset of community assignments containing the highest amounts of posterior probability (like the maximum-a-posteriori estimator). It is argued that for the proposed construction of confidence sets, a form of early stopping applies to MCMC sampling of the posterior, which would enable the computation of confidence sets at larger graph sizes.


翻译:在一个有着两个不同大小的族群的稀薄的随机区块模型中,我们得出了两个相继集中的不平等,这意味着:(1) 在宽度线下社区结构的事后(近似)恢复,其范围类似于种植的双形模型中众所周知的锐度;(2) 从可信的组群为社区任务构建信任套件,并带有一定的图形大小;后者使得在非被动图形大小的巴伊西亚人可信的组群中能够进行非常经常的不确定的量化,在那里可以模拟后继者。事实证明,可信和信任水平之间没有相称性:对于给定的边缘概率和期望的信任水平,存在一个临界的图形大小,要求的可信水平从近一到近零急剧下降。在这种图形大小中,经常者决定不包含建立其信任套件的后继支持,而只包含含有最高数量后继概率(如最大比例的估测点)的一小部分社区任务组群落(如最大比例的估测点) 。据论证,对于拟议构建的信任组合和信任水平而言,一个临界的图形尺寸是临界的图形大小,在更大比例的模型上将使用。

0
下载
关闭预览

相关内容

数字化健康白皮书,17页pdf
专知会员服务
107+阅读 · 2021年1月6日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年5月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年5月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员