State estimation for legged locomotion over a dynamic rigid surface (DRS), which is a rigid surface moving in the world frame (e.g., ships, aircraft, and trains), remains an under-explored problem. This paper introduces an invariant extended Kalman filter that estimates the robot's pose and velocity during DRS locomotion by using common sensors of legged robots (e.g., inertial measurement units (IMU), joint encoders, and RDB-D camera). A key feature of the filter lies in that it explicitly addresses the nonstationary surface-foot contact point and the hybrid robot behaviors. Another key feature is that, in the absence of IMU biases, the filter satisfies the attractive group affine and invariant observation conditions, and is thus provably convergent for the deterministic continuous phases. The observability analysis is performed to reveal the effects of DRS movement on the state observability, and the convergence property of the hybrid, deterministic filter system is examined for the observable state variables. Experiments of a Digit humanoid robot walking on a pitching treadmill validate the effectiveness of the proposed filter under sensor noise and biases as well as large estimation errors and DRS movement.
翻译:在动态僵硬表面(如船舶、飞机和火车)上,国家测测得的悬浮轨道是世界框架中的硬质表面运动(如船舶、飞机和火车),这仍然是一个未得到充分探讨的问题。本文介绍了一个无差异的延伸卡尔曼过滤器,该过滤器利用立体机器人的共同传感器(如惯性测量单位、联合编码器和RDB-D照相机)来估计DRS移动期间机器人的构成和速度。过滤器的一个关键特征在于它明确针对非静止表面-脚接触点和混合机器人行为。另一个关键特征是,在没有IMU偏向的情况下,过滤器满足有吸引力的人群的亲吻合和不变化的观察条件,因此对确定性连续阶段具有可调合性。进行可视性分析是为了揭示DRS运动对国家可观测性的影响,以及混合、确定性过滤系统的性质,为可观测的变量进行了检查。在一台数字型机器人行走的实验,作为悬浮性传感器,在高压度传感器上进行。