Most research in Bayesian optimization (BO) has focused on \emph{direct feedback} scenarios, where one has access to exact values of some expensive-to-evaluate objective. This direction has been mainly driven by the use of BO in machine learning hyper-parameter configuration problems. However, in domains such as modelling human preferences, A/B tests, or recommender systems, there is a need for methods that can replace direct feedback with \emph{preferential feedback}, obtained via rankings or pairwise comparisons. In this work, we present preferential batch Bayesian optimization (PBBO), a new framework that allows finding the optimum of a latent function of interest, given any type of parallel preferential feedback for a group of two or more points. We do so by using a Gaussian process model with a likelihood specially designed to enable parallel and efficient data collection mechanisms, which are key in modern machine learning. We show how the acquisitions developed under this framework generalize and augment previous approaches in Bayesian optimization, expanding the use of these techniques to a wider range of domains. An extensive simulation study shows the benefits of this approach, both with simulated functions and four real data sets.
翻译:Bayesian优化(BO)的多数研究都集中在 emph{ 直接反馈(BO) 情景上, 在这种情景中,人们可以获得某些昂贵到评估目标的确切值。这个方向主要是在机器学习超参数配置问题时使用BO驱动的。然而,在模拟人类偏好、A/B测试或建议系统等领域,需要采用一些方法,用通过排名或对等比较获得的\emph{ 偏重反馈来取代直接反馈。在这项工作中,我们提出了优厚的Bayesian最佳批次优化(BBBBO),这是一个新框架,可以找到某种潜在利益功能的最佳性,因为有两种或更多点的组群的平行优先反馈。我们这样做的方法是使用高斯进程模型,有可能专门设计出一种平行和有效的数据收集机制,这是现代机器学习的关键。我们展示了在这个框架下进行的收购如何将先前在Bayesian优化中采用的方法普遍化和扩充,将这些技术的使用扩大到更广泛的领域。一个广泛的模拟研究显示这一方法的好处,既包括模拟功能,也有四种真实数据集。