The finite element method (FEM) and the boundary element method (BEM) can numerically solve the Helmholtz system for acoustic wave propagation. When an object with heterogeneous wave speed or density is embedded in an unbounded exterior medium, the coupled FEM-BEM algorithm promises to combine the strengths of each technique. The FEM handles the heterogeneous regions while the BEM models the homogeneous exterior. Even though standard FEM-BEM algorithms are effective, they do require stabilisation at resonance frequencies. One such approach is to add a regularisation term to the system of equations. This algorithm is stable at all frequencies but also brings higher computational costs. This study proposes a regulariser based on the on-surface radiation conditions (OSRC). The OSRC operators are also used to precondition the boundary integral operators and combined with incomplete LU factorisations for the volumetric weak formulation. The proposed preconditioning strategy improves the convergence of iterative linear solvers significantly, especially at higher frequencies.
翻译:限制元素法(FEM) 和边界元素法(BEM) 可以用数字方式解决用于声波传播的赫尔默尔茨系统。 当一个具有不同波速或密度的物体嵌入一个无约束的外部介质时, FEM-BEM 组合算法承诺将每种技术的优点结合起来。 FEM 处理不同区域,而 BEM 模型则模拟同质外表。即使标准FEM-BEM 算法是有效的,它们的确需要在共振频率上实现稳定。其中一种方法是在方程式系统中添加一个常规化术语。这种算法在所有频率上都稳定,但也带来更高的计算成本。本研究提出了一种基于地表辐射条件(OSRC)的正规化。 OSRC 操作员还被用来为边界整体操作员设定先决条件,并结合体积弱配制的不完全的LU因子化。提议的前提条件战略极大地提高了迭接线求解器的趋同性,特别是在更高的频率上。