The state complexity of a finite(-state) automaton intuitively measures the size of the description of the automaton. Sakoda and Sipser [STOC 1972, pp. 275--286] were concerned with nonuniform families of finite automata and they discussed the behaviors of the nonuniform complexity classes defined by such families of finite automata having polynomial-size state complexity. In a similar fashion, we introduce nonuniform state complexity classes using nonuniform families of quantum finite automata empowered by the flexible use of garbage tapes. We first show inclusion and separation relationships among nonuniform state complexity classes of various one-way finite automata, including deterministic, nondeterministic, probabilistic, and quantum finite automata having polynomially many inner states. For two-way quantum finite automata equipped with flexible garbage tapes, we present a close relationship between the nonuniform state complexity of the family of such a polynomial-size quantum finite automata and the parameterized complexity class induced by quantum logarithmic-space computation assisted by polynomial-size advice. We further establish a direct connection between space-bounded quantum computation with quantum advice and quantum finite automata whose transitions are dictated by superpositions of transition tables.
翻译:限制( 状态) 自动自定义的复杂度 直观测量自制磁带描述大小的状态复杂性 。 Sakoda 和 Sipser [STOC, 1972, pp.275- 286] 关注非统一的自制自制型家庭 。 他们讨论了非统一的自制型复杂度类别的行为, 由具有多种内部状态的自制型家庭 所定义的不统一的自制型( 状态) 。 同样, 我们采用非统一的自制型家庭, 使用灵活使用垃圾磁带增强的量制自制型自制式磁带 。 我们首先展示各种单向自制型自制自制自制自制型的自制型( STOC, 1972, pp.27 ) 的单向式自制型自制型自动自制型家庭 的不统一复杂度类别之间的包容和分离关系, 包括确定性、 非定性、 非定性、 概率和量制自制自制型自制型的自制型的自制型自制型的自制型的自制式复合等级。 我们用自制自制的自制的自制量量量量级计算和自制的自制的自制的自制的自制的自制量量量量量量成的自制的自制的自制的自制型号的自制型号的自制量量量量量量的自制的自制的自制的自制量量量级关系,, 由多制型号的自制量量量量量度度度度级的自制量级的自制式的自制的自制的自制的自制的自制式的自制式的自制量级的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制式的自制型号的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制型号的自制的自制的自制的自制式的自制式的自制式的自制