We present a neural network architecture for medical image segmentation of diabetic foot ulcers and colonoscopy polyps. Diabetic foot ulcers are caused by neuropathic and vascular complications of diabetes mellitus. In order to provide a proper diagnosis and treatment, wound care professionals need to extract accurate morphological features from the foot wounds. Using computer-aided systems is a promising approach to extract related morphological features and segment the lesions. We propose a convolution neural network called HarDNet-DFUS by enhancing the backbone and replacing the decoder of HarDNet-MSEG, which was SOTA for colonoscopy polyp segmentation in 2021. For the MICCAI 2022 Diabetic Foot Ulcer Segmentation Challenge (DFUC2022), we train HarDNet-DFUS using the DFUC2022 dataset and increase its robustness by means of five-fold cross validation, Test Time Augmentation, etc. In the validation phase of DFUC2022, HarDNet-DFUS achieved 0.7063 mean dice and was ranked third among all participants. In the final testing phase of DFUC2022, it achieved 0.7287 mean dice and was the first place winner. HarDNet-DFUS also deliver excellent performance for the colonoscopy polyp segmentation task. It achieves 0.924 mean Dice on the famous Kvasir dataset, an improvement of 1.2\% over the original HarDNet-MSEG. The codes are available on https://github.com/kytimmylai/DFUC2022 (for Diabetic Foot Ulcers Segmentation) and https://github.com/YuWenLo/HarDNet-DFUS (for Colonoscopy Polyp Segmentation).
翻译:我们为糖尿病足部溃疡和结肠镜化聚谱的医学图象分割提供了一个神经网络结构。糖尿病脚部溃疡是2021年糖尿病的神经病和血管并发症造成的。为了提供正确的诊断和治疗,创伤护理专业人员需要从脚部伤口中提取准确的形态特征。使用计算机辅助系统是利用五倍交叉校验、测试时间放大等手段提取相关的形态特征和偏差的很有希望的方法。我们提议通过增强HarDNet-DFUS的脊椎和替换HarDNet-MSEG的脱co器来建立一个称为HarDNet-MSEG的骨架。HarDNet-MSEG是2021年用于结肠镜化的神经病和血管外科。对于MICCAI 2022 诊断性脚部结裂分析挑战(DFUC-2022),我们利用DUC-2022数据集来培训HarDNet-DFUS的准确性能特征特征。在DFS 202的验证阶段,HarDUD-DUS首次实现了0.063的平均值DF, 也成为了目前202 的高级数据分析阶段。