In this paper, we study the numerical stabilization of a 1D system of two wave equations coupled by velocities with an internal, local control acting on only one equation. In the theoretical part of this study, we distinguished two cases. In the first one, the two waves assumed propagate at the same speed. Under appropriate geometric conditions, we had proved that the energy decays exponentially. While in the second case, when the waves propagate at different speeds, under appropriate geometric conditions, we had proved that the energy decays only at a polynomial rate. In this paper, we confirmed these two results in a 1D numerical approximation. However, when the coupling region does not intersect the damping region, the stabilization of the system is still theoretically an open problem. But, here in both cases, we observed an unpredicted behavior : the energy decays at an exponential rate when the propagation speeds are the same or at a polynomial rate when they are different.
翻译:在本文中,我们研究了由两个波方形组成的一维系统的数字稳定化, 加上速度, 以及一个内部的局部控制, 只对一个方程式进行操作。 在这项研究的理论部分中, 我们区分了两个情况。 在第一个方程式中, 两波的假设以相同的速度扩散。 在适当的几何条件下, 我们证明能量会以指数化的速度衰减。 在第二个方程式中, 当波以不同的速度扩散时, 在适当的几何条件下, 我们证明能量只会以多元速率衰减。 在本文中, 我们确认这两个结果为 1D 数字近似值。 但是, 当连接的区域没有交叉断裂区域时, 系统的稳定化在理论上仍然是一个开放的问题。 但是, 在这两个方程式中, 我们观察到了一种未预见到的行为: 当传播速度相同时, 能量会以指数衰减, 或者当它们不同时, 以指数化的速度衰减。