We answer a question posed by Dougherty and Faber in [3], "Network routing on regular directed graphs from spanning factorizations." We prove that every vertex transitive digraph has a spanning factorization; in fact, this is a necessary and sufficient condition. We show that 1-factorization of a regular digraph is closely related to the notion of a Cayley graph of a groupoid and as such, the theorem we prove on spanning factorizations can be translated to a 2006 theorem of Mwambene [4; Theorem 9] on groupoids. We also show that groupoids are a powerful tool for examining network routing on general regular digraphs. We show there is a 1-1 relation between regular connected digraphs of degree d and the Cayley graphs of groupoids (not necessarily associative but with left identity and right cancellation) with d generators. This enables us to provide compact algebraic definitions for some important graphs that are either given as explicit edge lists or as the Cayley coset graphs of groups larger than the graph. One such example is a single expression for the Hoffman-Singleton graph.
翻译:我们回答Dougherty 和 Faber 在 [3] 中提出的问题,“通过跨因子化的常规定向图形上的网络路由”。 我们证明每个顶端中转分线都具有跨越因子化的功能; 事实上,这是一个必要和充分的条件。 我们显示, 常规分线的1个因子化与一个群状的Cayley图的概念密切相关, 因此, 我们所证明的关于跨因子化的理论可以被翻译成2006年的Mwambene的理论[4]; 理论9] 群状图中。 我们还表明, 群状体是检查一般分数中的网络路由的强大工具。 我们显示, 正常连接度 d 的比 Cayley 图表( 虽然不一定关联,但与左侧身份和右吊销有关) 与d 组群状图有1至1个关系。 这使我们能够为某些重要图表提供紧凑的代数定义, 它们是作为明确的边缘列表提供的, 或者作为Cayley coseet 图表中比图表大的一组。