4D CT imaging is an essential component of radiotherapy of thoracic/abdominal tumors. 4D CT images are, however, often affected by artifacts that compromise treatment planning quality. In this work, deep learning (DL)-based conditional inpainting is proposed to restore anatomically correct image information of artifact-affected areas. The restoration approach consists of a two-stage process: DL-based detection of common interpolation (INT) and double structure (DS) artifacts, followed by conditional inpainting applied to the artifact areas. In this context, conditional refers to a guidance of the inpainting process by patient-specific image data to ensure anatomically reliable results. The study is based on 65 in-house 4D CT images of lung cancer patients (48 with only slight artifacts, 17 with pronounced artifacts) and two publicly available 4D CT data sets that serve as independent external test sets. Automated artifact detection revealed a ROC-AUC of 0.99 for INT and of 0.97 for DS artifacts (in-house data). The proposed inpainting method decreased the average root mean squared error (RMSE) by 52%(INT) and 59% (DS) for the in-house data. For the external test data sets, the RMSE improvement is similar (50% and 59 %, respectively). Applied to 4D CT data with pronounced artifacts (not part of the training set), 72% of the detectable artifacts were removed. The results highlight the potential of DL-based inpainting for restoration of artifact-affected 4D CT data. Compared to recent 4D CT inpainting and restoration approaches, the proposed methodology illustrates the advantages of exploiting patient-specific prior image information.


翻译:4D CT成像是胸部/腹部肿瘤放疗的重要组成部分。然而,4D CT图像往往会受到损伤的影响,从而影响治疗规划的质量。本文提出了基于深度学习(DL)的条件修复方法,用于恢复受到损伤影响的区域中的解剖学正确的图像信息。修复方法包括两个阶段的过程:基于DL的检测常见插值(INT)和双重结构(DS)伪影,接着是应用于受损区域的条件修复。在此上下文中,条件是指通过患者特定的图像数据引导修复过程,以确保解剖学可靠的结果。该研究基于65例肺癌患者的4D CT图像(48例轻微受干扰,17例重度受干扰)及两个公开可用的4D CT数据集,它们是独立的外部测试集。自动化伪影检测显示INT和DS伪影的ROC-AUC分别为0.99(公司内数据)和0.97(公司内数据)。所提出的修复方法降低了公司内数据的平均均方根误差(RMSE)分别为52%(INT)和59%(DS)。对于外部测试数据集,RMSE的改善类似(分别为50%和59%)。针对具有明显伪影的4D CT数据(不属于训练集的一部分),成功的去除了72%的可检测伪影。结果突出了基于DL的修复工艺用于恢复受伪影影响的4D CT资料的潜力。与最近的4D CT修复和修复方法相比,所提出的方法学体现了利用特定于患者的先前图像信息的优点。

0
下载
关闭预览

相关内容

图像修复(英语:Inpainting)指重建的图像和视频中丢失或损坏的部分的过程。例如在博物馆中,这项工作常由经验丰富的博物馆管理员或者艺术品修复师来进行。数码世界中,图像修复又称图像插值或视频插值,指利用复杂的算法来替换已丢失、损坏的图像数据,主要替换一些小区域和瑕疵。
专知会员服务
32+阅读 · 2021年9月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
76+阅读 · 2019年10月10日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
【泡泡一分钟】在CPU上进行实时无监督单目深度估计
泡泡机器人SLAM
17+阅读 · 2019年5月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
12+阅读 · 2021年6月29日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年9月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
76+阅读 · 2019年10月10日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员