The increasing use of cloud computing for latency-sensitive applications has sparked renewed interest in providing tight bounds on network tail latency. Achieving this in practice at reasonable network utilization has proved elusive, due to a combination of highly bursty application demand, faster link speeds, and heavy-tailed message sizes. While priority scheduling can be used to reduce tail latency for some traffic, this comes at a cost of much worse delay behavior for all other traffic on the network. Most operators choose to run their networks at very low average utilization, despite the added cost, and yet still suffer poor tail behavior. This paper takes a different approach. We build a system, swp, to help operators (and network designers) to understand and control tail latency without relying on priority scheduling. As network workload changes, swp is designed to give real-time advice on the network switch configurations needed to maintain tail latency objectives for each traffic class. The core of swp is an efficient model for simulating the combined effect of traffic characteristics, end-to-end congestion control, and switch scheduling on service-level objectives (SLOs), along with an optimizer that adjusts switch-level scheduling weights assigned to each class. Using simulation across a diverse set of workloads with different SLOs, we show that to meet the same SLOs as swp provides, FIFO would require 65% greater link capacity, and 79% more for scenarios with tight SLOs on bursty traffic classes.


翻译:使用云计算对延时敏感应用的云层越来越多,这又重新激起人们对提供网络尾部延时的紧限的兴趣。在合理使用网络的情况下在实践中实现这一点被证明难以实现,因为应用需求高度爆炸性,链接速度加快,而且信息量也繁琐。虽然可以使用优先时间安排来减少某些交通的尾部延时,但对于网络上所有其他交通来说,其代价更差得多。大多数运营商选择以非常低的平均利用率运行其网络,尽管成本增加,但仍然遭受不良的尾部行为。本文采取了不同的做法。我们建立了一个系统,Swpp,以帮助运营商(和网络设计师)理解和控制尾部延时不依赖优先时间安排。随着网络工作量的变化,Swp被设计为保持每类交通尾部的尾部延时节配置提供实时咨询。Swpp是模拟交通特点的综合效应、终端到尾部拥堵时,将服务水平(SLOP)调整到服务水平上(SLO),同时以不同的SLFA为不同比例的排序,通过不同的SLFA级别,提供更高的SLFS-roqs 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
60+阅读 · 2020年3月19日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
一文带你读懂 SegNet(语义分割)
AI研习社
19+阅读 · 2019年3月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Carbon Emissions and Large Neural Network Training
Arxiv
0+阅读 · 2021年4月23日
Arxiv
0+阅读 · 2021年4月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
一文带你读懂 SegNet(语义分割)
AI研习社
19+阅读 · 2019年3月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员