Understanding model predictions is critical in healthcare, to facilitate rapid verification of model correctness and to guard against use of models that exploit confounding variables. We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images, in which a model must indicate the regions used to predict each abnormality. To solve this task, we propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality. Next we incorporate HiResCAM, an attention mechanism, to identify sub-slice regions. We prove that for AxialNet, HiResCAM explanations are guaranteed to reflect the locations the model used, unlike Grad-CAM which sometimes highlights irrelevant locations. Armed with a model that produces faithful explanations, we then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions to encourage the model to predict abnormalities based only on the organs in which those abnormalities appear. The 3D allowed regions are obtained automatically through a new approach, PARTITION, that combines location information extracted from radiology reports with organ segmentation maps obtained through morphological image processing. Overall, we propose the first model for explainable multi-abnormality prediction in volumetric medical images, and then use the mask loss to achieve a 33% improvement in organ localization of multiple abnormalities in the RAD-ChestCT data set of 36,316 scans, representing the state of the art. This work advances the clinical applicability of multiple abnormality modeling in chest CT volumes.
翻译:理解模型预测在医疗保健方面至关重要, 以便于快速核实模型正确性, 并防范使用利用混杂变量的模型。 我们引入了在体积医学图像中解释多种异常分类的具有挑战性的新任务, 其中模型必须显示用于预测每一种异常的区域。 为了解决这个问题, 我们建议使用多实例学习共变神经网络AxialNet, 以便识别每一种异常的顶端切片。 我们随后将HiResCAM(一个关注机制)纳入一个关注机制, 以识别次链区域。 我们证明, AxialNet( HiResCAM)的解释可以保证反映所使用的模型的多重性位置, 不像Grad- CAM(有时突出不相关的位置) 那样, 模型必须显示用于预测每种异常的区域。 然后, 我们的目标是通过利用HiResCAM (AxalNet) 和 3D(允许区域) 来鼓励模型仅根据出现异常的器官模型来预测异常程度。 3D允许区域通过一种新的方法( Parttion) 来自动获得。 从放射学报告中提取的定位模型信息, 以及解剖面图解的多器官分析图解过程中,, 分析中, 分析过程分析过程中显示中, 分析过程分析过程分析过程中, 分析。