项目名称: 金属掺杂及接触对半导体SERS基底效应的影响

项目编号: No.21273091

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 赵冰

作者单位: 吉林大学

项目金额: 80万元

中文摘要: 半导体纳米材料对可见区的表面等离子体吸收几乎没有贡献,是研究SERS中化学增强的理想体系。本申请在前期工作的基础上,继续开展半导体纳米材料作为SERS 基底的研究工作。主要目标为:1)利用金属掺杂对半导体纳米材料光电性质的影响,考察其对SERS增强效应的贡献。通过在半导体纳米材料晶格中掺入不同浓度的金属离子,从而改变半导体纳米粒子的禁带宽度、表面缺陷含量,进一步探索对化学增强产生影响的各种因素;2)构筑各种金属-半导体-有机分子的模型体系,研究金属-半导体接触对SERS化学增强效应的影响。3)研究半导体晶格振动(声子模式)与吸附分子振动的协同增强效应。通过在半导体SERS基底上吸附不同的探针分子及改变激光激发波长,来调查探针分子振动光谱的拉曼位移及相对强度的变化,同时观察半导体纳米材料的声子振动模式,并探索半导体基底与探针分子的"共增强"现象。

中文关键词: 增强拉曼;半导体;电荷转移;掺杂;声子振动

英文摘要: Semiconductor nanomaterials are the perfect system to study SERS chemical enhancement, which are almost no contributions to the surface plasmon absorption among the region of visible light. The project will continue to carry out the research about the semiconductor nanomaterials as SERS substrate based on the preliminary work. The main objectives are: 1) to utilize the nature of doped metal to effect the optical and electrical properties of semiconductor nanomaterials and to investigate its contribution to the SERS enhancement effect. The doped materials are prepared by mixing with different concentrations of metal ions in the lattice of the semiconductor nanomaterials, which change the band gap of the semiconductor nanoparticles and surface defect content to further explore the impact of a variety of factors on the chemical enhancement; 2) to build a variety of metal - semiconductor - organic molecules model system to further study the metal - semiconductor contacts on the SERS chemical enhancement effect; 3) to investigate the synergistic enhancement effect between semiconductor lattice vibrations (phonon mode) and co-adsorption of molecular vibrations. By changing different adsorption probe molecules on SERS substrate and the laser excitation wavelength to study the Raman shift and relative intensity change o

英文关键词: Enhanced Raman Spectroscopy;Semiconductor;Charge transfer;Dop;Phono vibration

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年3月23日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
14+阅读 · 2020年2月6日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员