Despite decades of research, SE lacks widely accepted models (that offer precise quantitative predictions) about what factors most influence software quality. This paper provides a "good news" result that such general models can be generated using a new transfer learning framework called "GENERAL". Given a tree of recursively clustered projects (using project meta-data), GENERAL promotes a model upwards if it performs best in the lower clusters (stopping when the promoted model performs worse than the models seen at a lower level). The number of models found by GENERAL is minimal: one for defect prediction (756 projects) and less than a dozen for project health (1628 projects). Hence, via GENERAL, it is possible to make conclusions that hold across hundreds of projects at a time. Further, the models produced in this manner offer predictions that perform as well or better than prior state-of-the-art. To the best of our knowledge, this is the largest demonstration of the generalizability of quantitative predictions of project quality yet reported in the SE literature.
翻译:尽管进行了数十年的研究,但SE缺乏关于哪些因素对软件质量影响最大的广泛接受的模型(提供精确的定量预测),本文提供了“好消息”的结果,即这种一般模型可以使用称为“档案”的新的转移学习框架产生。鉴于一棵反复集群项目(使用项目元数据)的树,如果模型在较低集群中表现最佳,一般会向上推广一个模型(在推广模型比较低层级的模型差时停止使用);General发现的模式数量很少:一个是缺陷预测模型(756个项目),不到十几个是项目健康模型(1628个项目)。因此,通过General,可以就数百个项目一次得出结论。此外,以这种方式产生的模型提供的预测效果好于或好于以往的艺术状态。据我们所知,这是对SE文献中报告的项目质量定量预测的可通用性最大的证明。