Classifying semantic relations between entity pairs in sentences is an important task in Natural Language Processing (NLP). Most previous models for relation classification rely on the high-level lexical and syntactic features obtained by NLP tools such as WordNet, dependency parser, part-of-speech (POS) tagger, and named entity recognizers (NER). In addition, state-of-the-art neural models based on attention mechanisms do not fully utilize information of entity that may be the most crucial features for relation classification. To address these issues, we propose a novel end-to-end recurrent neural model which incorporates an entity-aware attention mechanism with a latent entity typing (LET) method. Our model not only utilizes entities and their latent types as features effectively but also is more interpretable by visualizing attention mechanisms applied to our model and results of LET. Experimental results on the SemEval-2010 Task 8, one of the most popular relation classification task, demonstrate that our model outperforms existing state-of-the-art models without any high-level features.


翻译:在自然语言处理系统(NLP)中,分类对等实体之间的语义关系是一项重要任务。以往的大多数关系分类模式都依赖NLP工具(如WordNet、依赖分析器、部分语音标签和名称实体识别器(NER))获得的高层次词汇和合成特征。此外,基于关注机制的先进神经模型没有充分利用可能是关系分类最关键特征的实体信息。为了解决这些问题,我们提议了一个新的端到端经常性神经模型,其中含有一个具有潜伏实体打字法的实体觉注意机制。我们的模型不仅将实体及其潜在类型作为特征加以有效利用,而且通过对我们的模型和LEAT结果应用的视觉关注机制更容易解释。关于SemEval-2010任务8的实验性结果(最受欢迎的关系分类任务之一)表明,我们的模型超越了目前没有高层次特征的状态模型。

3
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
一文读懂依存句法分析
AINLP
16+阅读 · 2019年4月28日
别说还不懂依存句法分析
人工智能头条
23+阅读 · 2019年4月8日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
21+阅读 · 2019年8月21日
Bidirectional Attention for SQL Generation
Arxiv
4+阅读 · 2018年6月21日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
13+阅读 · 2017年12月5日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
一文读懂依存句法分析
AINLP
16+阅读 · 2019年4月28日
别说还不懂依存句法分析
人工智能头条
23+阅读 · 2019年4月8日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员