With the rise in consumer depth cameras, a wealth of unlabeled RGB-D data has become available. This prompts the question of how to utilize this data for geometric reasoning of scenes. While many RGB-D registration meth- ods rely on geometric and feature-based similarity, we take a different approach. We use cycle-consistent keypoints as salient points to enforce spatial coherence constraints during matching, improving correspondence accuracy. Additionally, we introduce a novel pose block that combines a GRU recurrent unit with transformation synchronization, blending historical and multi-view data. Our approach surpasses previous self- supervised registration methods on ScanNet and 3DMatch, even outperforming some older supervised methods. We also integrate our components into existing methods, showing their effectiveness.
翻译:随着消费级深度相机的普及,大量未标记的RGB-D数据变得可用。这引发了一个问题:如何利用这些数据进行场景的几何推理。尽管许多RGB-D配准方法依赖于几何和基于特征的相似性,我们采取了不同的方法。我们使用循环一致的关键点作为显著点,在匹配过程中强制执行空间一致性约束,从而提高对应关系的准确性。此外,我们引入了一个新颖的姿态模块,该模块将GRU循环单元与变换同步相结合,融合了历史和多视角数据。我们的方法在ScanNet和3DMatch数据集上超越了先前的自监督配准方法,甚至优于一些较早的监督方法。我们还将我们的组件集成到现有方法中,展示了其有效性。