Horn functions form a subclass of Boolean functions possessing interesting structural and computational properties. These functions play a fundamental role in algebra, artificial intelligence, combinatorics, computer science, database theory, and logic. In the present paper, we introduce the subclass of hypergraph Horn functions that generalizes matroids and equivalence relations. We provide multiple characterizations of hypergraph Horn functions in terms of implicate-duality and the closure operator, which are respectively regarded as generalizations of matroid duality and Mac Lane-Steinitz exchange property of matroid closure. We also study algorithmic issues on hypergraph Horn functions, and show that the recognition problem (i.e., deciding if a given definite Horn CNF represents a hypergraph Horn function) and key realization (i.e., deciding if a given hypergraph is realized as a key set by a hypergraph Horn function) can be done in polynomial time, while implicate sets can be generated with polynomial delay.
翻译:角函数形成一个具有有趣的结构和计算属性的布尔函数子分类。 这些函数在代数、 人工智能、 组合法、 计算机科学、 数据库理论和逻辑中起着根本作用 。 在本文件中, 我们引入了高光角函数的子分类, 概括了类固醇和等效关系 。 我们提供了高光角函数的多重特征描述, 包括隐含质和关闭操作器, 分别被视为超光学双元的概括化, 和Mac Lane- Steinitz 交换机关闭的属性 。 我们还研究了高光谱角函数的算法问题, 并展示了识别问题( 即决定给定的非洲之角超光速函数是否代表了高光线函数) 和关键实现( 即决定特定超光谱是否作为高光度角函数设定的密钥实现 ) 可以在多球时完成, 而隐含的数据集可以随着多球延迟而生成 。