Using theoretical and numerical results, we document the accuracy of commonly applied variational Bayes methods across a broad range of state space models. The results demonstrate that, in terms of accuracy on fixed parameters, there is a clear hierarchy in terms of the methods, with approaches that do not approximate the states yielding superior accuracy over methods that do. We also document numerically that the inferential discrepancies between the various methods often yield only small discrepancies in predictive accuracy over small out-of-sample evaluation periods. Nevertheless, in certain settings, these predictive discrepancies can become marked over longer out-of-sample periods. This finding indicates that the invariance of predictive results to inferential inaccuracy, which has been an oft-touted point made by practitioners seeking to justify the use of variational inference, is not ubiquitous and must be assessed on a case-by-case basis.


翻译:使用理论和数字结果,我们记录了在一系列广泛的国家空间模型中通用的变异贝耶斯方法的准确性。结果显示,从固定参数的准确性看,在方法上存在着明确的等级分级,其方法不近于国家产生优于方法的准确性。我们还用数字来证明,不同方法之间的推论差异往往只产生小范围的超出抽样评价期的预测准确性差异。然而,在某些环境下,这些预测性差异可能会在较长的抽样期中出现。这一发现表明,预测结果的偏差导致推断的不准确性,而实践者试图证明使用变异推断是有道理的,但这种预测性差异并非无处不在,必须逐案评估。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【实用书】数据科学基础,484页pdf,Foundations of Data Science
专知会员服务
120+阅读 · 2020年5月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
110+阅读 · 2020年2月5日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员