This paper contributes to the verification of programs written in Bitcoin's smart contract language script in the interactive theorem prover Agda. It focuses on the security property of access control for script programs that govern the distribution of Bitcoins. It advocates that weakest preconditions in the context of Hoare triples are the appropriate notion for verifying access control. It aims at obtaining human-readable descriptions of weakest preconditions in order to close the validation gap between user requirements and formal specification of smart contracts. As examples for the proposed approach, the paper focuses on two standard script programs that govern the distribution of Bitcoins, Pay to Public Key Hash (P2PKH) and Pay to Multisig (P2MS). The paper introduces an operational semantics of the script commands used in P2PKH and P2MS, which is formalised in the Agda proof assistant and reasoned about using Hoare triples. Two methodologies for obtaining human-readable descriptions of weakest preconditions are discussed: (1) a step-by-step approach, which works backwards instruction by instruction through a script, sometimes stepping over several instructions in one go; (2) symbolic execution of the code and translation into a nested case distinction, which allows to read off weakest preconditions as the disjunction of conjunctions of conditions along accepting paths. A syntax for equational reasoning with Hoare Triples is defined in order to formalise those approaches in Agda. Keywords and phrases: Blockchain; Cryptocurrency; Bitcoin; Agda; Verification; Hoare logic; Bitcoin script; P2PKH; P2MS; Access control; Weakest precondition; Predicate transformer semantics; Provable correctness; Symbolic execution; Smart contracts


翻译:本文有助于核实 Bitcoin 智能合同语言脚本在互动理论验证器 Agda 中写入的程序。 它侧重于用于管理 Bitcoins 分布的脚本程序访问控制的安全性。 它主张, Hoare 三进制背景下最弱的先决条件是核查访问控制的适当概念。 它旨在获取最弱先决条件的可读描述,以缩小用户要求和智能合同正式规格之间的验证差距。 作为拟议方法的例子, 该文件侧重于两个标准脚本程序, 用于管理 Bitcoins 的分布, 向公钥 Hash (P2PKH) 支付 和向 Multisig (P2MS) 支付 。 该文件介绍了P2P2PKHA 和 P2MS 中使用的脚本命令的操作性修饰性。 它在 Agda 校验助理中正式化了对最弱先决条件的描述, 以人类可读性描述最弱先决条件的两种方法。 讨论:(1) 递增方法, 它通过脚本方法, 有时在多个指令上跳过几个指令; (2) 象征性地执行HOrilleal- train intribilate rialationalationalate; 将代码转换变成变为标准; 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月26日
Arxiv
0+阅读 · 2022年6月24日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员