This paper presents a new multimodal interventional radiology dataset, called PoCaP (Port Catheter Placement) Corpus. This corpus consists of speech and audio signals in German, X-ray images, and system commands collected from 31 PoCaP interventions by six surgeons with average duration of 81.4 $\pm$ 41.0 minutes. The corpus aims to provide a resource for developing a smart speech assistant in operating rooms. In particular, it may be used to develop a speech controlled system that enables surgeons to control the operation parameters such as C-arm movements and table positions. In order to record the dataset, we acquired consent by the institutional review board and workers council in the University Hospital Erlangen and by the patients for data privacy. We describe the recording set-up, data structure, workflow and preprocessing steps, and report the first PoCaP Corpus speech recognition analysis results with 11.52 $\%$ word error rate using pretrained models. The findings suggest that the data has the potential to build a robust command recognition system and will allow the development of a novel intervention support systems using speech and image processing in the medical domain.
翻译:本文介绍了一个新的多式干预放射数据集,称为PoCaP(Catherter Plap) Corpus。该数据集包括德国X光图像中的语音和音频信号,以及从31个PoCaP干预中收集的系统指令,平均持续时间为81.4美元/pm美元/41.0分钟。该软件旨在为在手术室开发智能语音助理提供资源,特别是可用于开发一个语音控制系统,使外科医生能够控制C-武器移动和表位位置等操作参数。为了记录数据集,我们获得了Erlangen大学医院机构审查委员会和工人理事会以及患者对数据隐私的认可。我们描述了记录设置、数据结构、工作流程和预处理步骤,并报告了第一个PoCaP Corpus语音识别分析结果,使用预先培训的模型提供了11.52美元/%字错误率。研究结果表明,这些数据有可能建立一个强大的指令识别系统和表位位置。为了记录数据集,并将允许开发使用医学领域的语音和图像处理手段的新干预支持系统。