Discrete variational auto-encoders (VAEs) are able to represent semantic latent spaces in generative learning. In many real-life settings, the discrete latent space consists of high-dimensional structures, and propagating gradients through the relevant structures often requires enumerating over an exponentially large latent space. Recently, various approaches were devised to propagate approximated gradients without enumerating over the space of possible structures. In this work, we use Natural Evolution Strategies (NES), a class of gradient-free black-box optimization algorithms, to learn discrete structured VAEs. The NES algorithms are computationally appealing as they estimate gradients with forward pass evaluations only, thus they do not require to propagate gradients through their discrete structures. We demonstrate empirically that optimizing discrete structured VAEs using NES is as effective as gradient-based approximations. Lastly, we prove NES converges for non-Lipschitz functions as appear in discrete structured VAEs.
翻译:分解变异自动编码器( VAE) 能够在基因学习中代表语义潜伏空间。 在许多现实环境中, 离散潜伏空间由高维结构组成, 通过相关结构传播梯度往往需要用指数性巨大的潜伏空间进行计算。 最近, 设计了多种方法来传播近似梯度, 而不在可能的结构空间中进行计算。 在这项工作中, 我们使用自然进化战略( NES), 这是一种无梯度黑盒优化算法, 学习离散结构的VAEs 。 NES 算法在计算上具有吸引力, 因为它们仅用远端过路评估来估计梯度, 因此它们不需要通过离心结构来传播梯度。 我们从经验上证明, 使用 NES 优化离散结构 VAE 是像以梯度为基的近光点一样有效的。 最后, 我们证明 NES 与离子结构 VAE 中显示的非Lipschitz 函数相融合 。