Designing efficient and high-accuracy numerical methods for complex dynamic incompressible magnetohydrodynamics (MHD) equations remains a challenging problem in various analysis and design tasks. This is mainly due to the nonlinear coupling of the magnetic and velocity fields occurring with convection and Lorentz forces, and multiple physical constraints, which will lead to the limitations of numerical computation. In this paper, we develop the MHDnet as a physics-preserving learning approach to solve MHD problems, where three different mathematical formulations are considered and named $B$ formulation, $A_1$ formulation, and $A_2$ formulation. Then the formulations are embedded into the MHDnet that can preserve the underlying physical properties and divergence-free condition. Moreover, MHDnet is designed by the multi-modes feature merging with multiscale neural network architecture, which can accelerate the convergence of the neural networks (NN) by alleviating the interaction of magnetic fluid coupling across different frequency modes. Furthermore, the pressure fields of three formulations, as the hidden state, can be obtained without extra data and computational cost. Several numerical experiments are presented to demonstrate the performance of the proposed MHDnet compared with different NN architectures and numerical formulations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员