Gait phase detection with convolution neural network provides accurate classification but demands high computational cost, which inhibits real time low power on-sensor processing. This paper presents a segmentation based gait phase detection with a width and depth downscaled U-Net like model that only needs 0.5KB model size and 67K operations per second with 95.9% accuracy to be easily fitted into resource limited on sensor microcontroller.
翻译:与卷发神经网络的Gait 阶段探测提供了准确的分类,但需要很高的计算成本,这抑制了传感器实时低功率处理。 本文展示了一种基于分层的动作阶段探测,其宽度和深度都像宽度和深度下缩的U-Net型号,只需要0.5KB型号,每秒67K型号操作,精度为95.9%,很容易安装到传感器微控制器有限的资源中。