Empirical Software Engineering (ESE) researchers study (open-source) project issues and the comments and threads within to discover -- among others -- challenges developers face when incorporating new technologies, platforms, and programming language constructs. However, such threads accumulate, becoming unwieldy and hindering any insight researchers may gain. While existing approaches alleviate this burden by classifying issue thread comments, there is a gap between searching popular open-source software repositories (e.g., those on GitHub) for issues containing particular keywords and feeding the results into a classification model. This paper demonstrates a research infrastructure tool called QuerTCI that bridges this gap by integrating the GitHub issue comment search API with the classification models found in existing approaches. Using queries, ESE researchers can retrieve GitHub issues containing particular keywords, e.g., those related to a specific programming language construct, and, subsequently, classify the discussions occurring in those issues. We hope ESE researchers can use our tool to uncover challenges related to particular technologies using specific keywords through popular open-source repositories more seamlessly than previously possible. A tool demonstration video may be found at: https://youtu.be/fADKSxn0QUk.
翻译:实践软件工程(ESE)研究人员研究(开放源码)项目问题,以及内部的评论和线索,以便发现 -- -- 除其他外 -- 开发者在采用新技术、平台和编程语言构造时面临的挑战。然而,这些线索会累积,变得不易操作,阻碍任何洞察力研究人员。虽然现有办法通过对问题线索评论进行分类来减轻这一负担,但在寻找包含特定关键词的公众开放源软件库(例如GitHub的用户)和将结果输入分类模型的问题方面,存在着差距。本文展示了一个称为 QuerTCI 的研究基础设施工具,通过将GitHub 发布的评论搜索 API与现有方法中的分类模型结合起来,弥合这一差距。使用查询,欧洲环境信息系统研究人员可以检索包含特定关键词的GitHub问题,例如与特定编程语言构造有关的问题,然后对在这些问题上进行的讨论进行分类。我们希望环境信息系统研究人员能够使用我们的工具,通过公众开放源码库使用特定关键词来发现与特定技术有关的挑战。一个工具演示视频可以在 httpADs://youxQ上找到。