In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel. One of our main contributions is the integration of VBA within a neural network paradigm, following an unrolling methodology. The proposed architecture is trained in a supervised fashion, which allows us to optimally set two key hyperparameters of the VBA model and lead to further improvements in terms of resulting visual quality. Various experiments involving grayscale/color images and diverse kernel shapes, are performed. The numerical examples illustrate the high performance of our approach when compared to state-of-the-art techniques based on optimization, Bayesian estimation, or deep learning.
翻译:在本文中,我们引入了图像盲解变异变异的Bayesian算法(VBA ) 。 我们的通用框架包含对未知的模糊/图像和模糊内核可能存在的同系物限制(如相加一)的光滑前科。 我们的主要贡献之一是将VBA纳入神经网络模式,遵循一种松动的方法。 拟议的结构以监督的方式得到培训,使我们能够最佳地设置VBA模型的两座关键超参数,从而进一步改善由此产生的视觉质量。 包括灰度/彩色图像和不同内核形状的各种实验都得到了实施。 数字实例表明,与基于优化、巴耶斯估计或深层次学习的先进技术相比,我们的方法表现很高。