Much like the classical Fisher linear discriminant analysis, Wasserstein discriminant analysis (WDA) is a supervised linear dimensionality reduction method that seeks a projection matrix to maximize the dispersion of different data classes and minimize the dispersion of same data classes. However, in contrast, WDA can account for both global and local inter-connections between data classes using a regularized Wasserstein distance. WDA is formulated as a bi-level nonlinear trace ratio optimization. In this paper, we present a bi-level nonlinear eigenvector (NEPv) algorithm, called WDA-nepv. The inner kernel of WDA-nepv for computing the optimal transport matrix of the regularized Wasserstein distance is formulated as an NEPv, and meanwhile the outer kernel for the trace ratio optimization is also formulated as another NEPv. Consequently, both kernels can be computed efficiently via self-consistent-field iterations and modern solvers for linear eigenvalue problems. Comparing with the existing algorithms for WDA, WDA-nepv is derivative-free and surrogate-model-free. The computational efficiency and applications in classification accuracy of WDA-nepv are demonstrated using synthetic and real-life datasets.
翻译:与古典的Fisher线性分布式分析(WDA)相似,Wasserstein光谱分析(WDA)是一种受监督的线性减少方法,它寻求一种预测矩阵,以最大限度地分散不同数据类别,并最大限度地减少同一数据类别的扩散。然而,相反,WDA可以使用正常的瓦塞斯坦距离,对数据类别之间的全球和地方相互联系进行核算。WDA是作为双级非线性跟踪比例优化的。在本文中,我们提出了一个双级非线性非线性精精选(NEPv)算法,称为WDA-nepv。WDA-nepv的内核内核,用于计算正常的瓦塞斯坦距离的最佳运输矩阵,作为NEPVVVV,同时用于跟踪比率优化的外核内核圈,也作为另一个NEPVVVVVV。因此,这两种内核内核都可以通过自我一致的实地迭代和现代解决线性电子价值问题的方法来有效计算。与WDA-nepstein数据库中的现有算法和使用无化数据级的无影化的精确化数据。