Given a graph $G=(V,E)$ and a set $S \subseteq \binom{V}{2}$ of terminal pairs, the minimum multicut problem asks for a minimum edge set $\delta \subseteq E$ such that there is no $s$-$t$-path in $G -\delta$ for any $\{s,t\}\in S$. For $|S|=1$ this is the well known $s$-$t$-cut problem, but in general the minimum multicut problem is NP-complete, even if the input graph is a tree. The multicut polytope $\text{MultC}^\square (G,S)$ is the convex hull of all multicuts in $G$; the multicut dominant is given by $\text{MultC}(G,S)=\text{MultC}^\square (G,S)+\mathbb{R}^E$. The latter is the relevant object for the minimization problem. While polyhedra associated to several cut problems have been studied intensively there is only little knowledge for multicut. We investigate properties of the multicut dominant and in particular derive results on liftings of facet-defining inequalities. This yields a classification of all facet-defining path- and edge inequalities. Moreover, we investigate the effect of graph operations such as node splitting, edge subdivisions, and edge contractions on the multicut-dominant and its facet-defining inequalities. In addition, we introduce facet-defining inequalities supported on stars, trees, and cycles and show that the former two can be separated in polynomial time when the input graph is a tree.


翻译:以 GG = (V, E) 美元和一套 $S = subseteq \ binom{ V ⁇ 2} + + + + + + + + + +, 最小多切问题需要最小边缘 $\ delta = subseteq E $, $G -\ delta$ = (V, E) 美元 和一套 $S = GG = (V, E) 美元和一套 $S = + = subsetseq + + + + +b + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 和 + + + + + + + + + + + + 和 + + + + + + + + + + + + + + + + + + + + + + + + + +++++++ + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

0
下载
关闭预览

相关内容

【ICLR2021】常识人工智能,77页ppt
专知会员服务
72+阅读 · 2021年5月11日
专知会员服务
25+阅读 · 2021年4月2日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
1+阅读 · 2022年2月6日
Arxiv
0+阅读 · 2022年2月4日
Arxiv
0+阅读 · 2022年2月4日
Arxiv
0+阅读 · 2022年2月3日
Arxiv
0+阅读 · 2022年2月3日
Arxiv
0+阅读 · 2022年2月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
1+阅读 · 2022年2月6日
Arxiv
0+阅读 · 2022年2月4日
Arxiv
0+阅读 · 2022年2月4日
Arxiv
0+阅读 · 2022年2月3日
Arxiv
0+阅读 · 2022年2月3日
Arxiv
0+阅读 · 2022年2月1日
Top
微信扫码咨询专知VIP会员