The novel coronavirus disease (COVID-19) began in Wuhan, China, in late 2019 and to date has infected over 148M people worldwide, resulting in 3.12M deaths. On March 10, 2020, the World Health Organisation (WHO) declared it as a global pandemic. Many academicians and researchers started to publish papers describing the latest discoveries on covid-19. The large influx of publications made it hard for other researchers to go through a large amount of data and find the appropriate one that helps their research. So, the proposed model attempts to extract relavent titles from the large corpus of research publications which makes the job easy for the researchers. Allen Institute for AI released the CORD-19 dataset, which consists of 2,00,000 journal articles related to coronavirus-related research publications from PubMed's PMC, WHO (World Health Organization), bioRxiv, and medRxiv pre-prints. Along with this document corpus, they have also provided a topics dataset named topics-rnd3 consisting of a list of topics. Each topic has three types of representations like query, question, and narrative. These Datasets are made open for research, and also they released a TREC-COVID competition on Kaggle. Using these topics like queries, our goal is to find out the relevant documents in the CORD-19 dataset. In this research, relevant documents should be recognized for the posed topics in topics-rnd3 data set. The proposed model uses Natural Language Processing(NLP) techniques like Bag-of-Words, Average Word-2-Vec, Average BERT Base model and Tf-Idf weighted Word2Vec model to fabricate vectors for query, question, narrative, and combinations of them. Similarly, fabricate vectors for titles in the CORD-19 dataset. After fabricating vectors, cosine similarity is used for finding similarities between every two vectors. Cosine similarity helps us to find relevant documents for the given topic.


翻译:新的科罗纳病毒疾病(COVID-19)始于中国武汉,始于2019年底,至今为止,已经感染了全世界148M人,造成3.12M人死亡。2020年3月10日,世界卫生组织(世卫组织)宣布其为全球流行病。许多学者和研究人员开始发表论文,描述关于科维19的最新发现。大量出版物的流入使得其他研究人员很难通过大量数据并找到有助于其研究的合适数据。因此,拟议的模型试图从大量研究出版物中提取重活标题,使研究人员容易找到工作。AI的Allen研究所发布了CORD-19数据集,该数据集由200 000篇期刊文章组成,与科伦娜病毒有关的研究出版物来自PubMed的PMC(世卫组织)、BRxiv和MedRxiv的预印。除了这个文件库之外,他们还提供了一个名为主题集的标本,由专题组-Prd3组成的专题集。每个专题都有三种类型的演示文集,例如查询、问题和陈述。这些数据集用于我们相关数据流流数据流数据库的版本,这些数据是用于公开数据库的每个主题。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2021年11月27日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
19+阅读 · 2021年6月15日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员