While the prevalence of large pre-trained language models has led to significant improvements in the performance of NLP systems, recent research has demonstrated that these models inherit societal biases extant in natural language. In this paper, we explore a simple method to probe pre-trained language models for gender bias, which we use to effect a multi-lingual study of gender bias towards politicians. We construct a dataset of 250k politicians from most countries in the world and quantify adjective and verb usage around those politicians' names as a function of their gender. We conduct our study in 7 languages across 6 different language modeling architectures. Our results demonstrate that stance towards politicians in pre-trained language models is highly dependent on the language used. Finally, contrary to previous findings, our study suggests that larger language models do not tend to be significantly more gender-biased than smaller ones.


翻译:虽然经过培训的大型语言模式的普及导致国家语言方案系统业绩的显著改善,但最近的研究表明,这些模式继承了自然语言中存在的社会偏见。在本文中,我们探索了一种简单的方法来调查经过培训的性别偏见语言模式,我们用这种方法对政治家的性别偏见进行多语种研究。我们构建了全世界大多数国家250k名政治家的数据集,并量化了这些政治家姓名的形容和动词用法,以此作为其性别的函数。我们用7种语言在6种不同的语言模式中进行研究。我们的结果表明,在经过培训的语言模式中,对政治家的立场高度依赖所使用的语言。最后,与以往的调查结果相反,我们的研究显示,更大的语言模式往往不会比较小的模式多得多。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
308+阅读 · 2020年11月26日
专知会员服务
123+阅读 · 2020年9月8日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
0+阅读 · 2021年6月9日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
308+阅读 · 2020年11月26日
专知会员服务
123+阅读 · 2020年9月8日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员