Over-the-air computation (AirComp) enables fast wireless data aggregation at the receiver through concurrent transmission by sensors in the application of Internet-of-Things (IoT). To further improve the performance of AirComp under unfavorable propagation channel conditions, we consider the problem of computation distortion minimization in a reconfigurable intelligent surface (RIS)-aided AirComp system. In particular, we take into account an additive bounded uncertainty of the channel state information (CSI) and the total power constraint, and jointly optimize the transceiver (Tx-Rx) and the RIS phase design from the perspective of worst-case robustness by minimizing the mean squared error (MSE) of the computation. To solve this intractable nonconvex problem, we develop an efficient alternating algorithm where both solutions to the robust sub-problem and to the joint design of Tx-Rx and RIS are obtained in closed forms. Simulation results demonstrate the effectiveness of the proposed method.
翻译:为了进一步改善Aircomp公司在不利的传播频道条件下的性能,我们考虑在可重新配置的智能表面(RIS)辅助的AirComp系统中将计算扭曲最小化的问题,特别是,我们考虑到频道状态信息(CSI)和总功率限制(CSI)的附加性约束不确定性,从最坏情况的角度,通过传感器同时传输来应用Tyings(IoT),对接收器进行快速无线数据汇总。为了在不利的传播频道条件下进一步改善AirComp公司的业绩,我们考虑在可重新配置的智能表面(RIS)辅助AComp系统中将计算扭曲最小化的问题。我们特别考虑到频道状态信息(CSI)和总功率限制(CSI)的附加性不确定性,并且从最坏情况的稳健角度联合优化收发报机(Tx-Rx)和RIS阶段设计,尽量减少计算中的平均平方差(MSE)。为了解决这一棘手的非convex问题,我们开发一种高效的交替算法,通过封闭形式获得稳健的子问题和Tx-Rx和RIS的联合设计。模拟结果显示了拟议方法的有效性。