Many large-scale recommender systems consist of two stages, where the first stage focuses on efficiently generating a small subset of promising candidates from a huge pool of items for the second-stage model to curate final recommendations from. In this paper, we investigate how to ensure group fairness to the items in this two-stage paradigm. In particular, we find that existing first-stage recommenders might select an irrecoverably unfair set of candidates such that there is no hope for the second-stage recommender to deliver fair recommendations. To this end, we propose two threshold-policy selection rules that, given any relevance model of queries and items and a point-wise lower confidence bound on the expected number of relevant items for each policy, find near-optimal sets of candidates that contain enough relevant items in expectation from each group of items. To instantiate the rules, we demonstrate how to derive such confidence bounds from potentially partial and biased user feedback data, which are abundant in many large-scale recommender systems. In addition, we provide both finite-sample and asymptotic analysis of how close the two threshold selection rules are to the optimal thresholds. Beyond this theoretical analysis, we show empirically that these two rules can consistently select enough relevant items from each group while minimizing the size of the candidate sets for a wide range of settings.


翻译:许多大型推荐人系统由两个阶段组成,第一阶段的重点是从第二阶段模式的庞大项目库中从大量项目库中高效产生一小组有希望的候选人,从其中产生一小组有希望的候选人,以便从中推敲最后建议。在本文件中,我们调查如何确保这一两阶段范式项目的集体公平性;特别是,我们发现,现有的第一阶段推荐人可能选择一套无法挽回的不公平候选人,以致第二阶段推荐人无法提出公平建议。为此,我们提出了两项门槛政策甄选规则,考虑到查询和项目的任何相关模式,以及对每项政策相关项目的预期数量所约束的低点信任度,找到每组项目期望中包含足够相关项目的近最佳候选人组。为了回调这些规则,我们证明如何从潜在偏差和偏差的用户反馈数据中获取这种信任。许多大型推荐人系统都有大量这些数据。此外,我们提供了两项关于两个门槛选择规则如何接近最佳门槛的有限和简单分析。除了理论分析之外,我们还从每一组的理论分析之外,以足够广泛的实验性的方式选择了两个候选人项目。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月15日
Arxiv
0+阅读 · 2022年7月14日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员