The ability to handle large scale variations is crucial for many real world visual tasks. A straightforward approach for handling scale in a deep network is to process an image at several scales simultaneously in a set of scale channels. Scale invariance can then, in principle, be achieved by using weight sharing between the scale channels together with max or average pooling over the outputs from the scale channels. The ability of such scale channel networks to generalise to scales not present in the training set over significant scale ranges has, however, not previously been explored. In this paper, we present a systematic study of this methodology by implementing different types of scale channel networks and evaluating their ability to generalise to previously unseen scales. We develop a formalism for analysing the covariance and invariance properties of scale channel networks, and explore how different design choices, unique to scaling transformations, affect the overall performance of scale channel networks. We first show that two previously proposed scale channel network designs do not generalise well to scales not present in the training set. We explain theoretically and demonstrate experimentally why generalisation fails in these cases. We then propose a new type of foveated scale channel architecture}, where the scale channels process increasingly larger parts of the image with decreasing resolution. This new type of scale channel network is shown to generalise extremely well, provided sufficient image resolution and the absence of boundary effects. Our proposed FovMax and FovAvg networks perform almost identically over a scale range of 8, also when training on single scale training data, and do also give improved performance when learning from datasets with large scale variations in the small sample regime.


翻译:处理大规模变异的能力对于许多真实世界的视觉任务至关重要。 在深网络中处理大规模变异的能力是一个直截了当的方法,就是在一组规模的频道中同时处理不同比例的图像。然后,从原则上说,通过使用比例频道之间的权重共享以及最大或平均集合从规模频道产生的产出,可以实现规模变异。但是,这些规模的频道网络能够将广度推广到在大规模范围培训中不存在的尺度,但以前尚未探讨过。在本文件中,我们提出一种系统化的方法,采用不同类型的规模频道网络,并评价其向以前看不见的规模扩展的能力。我们发展了一种正规主义,用于分析规模频道网络的共变异性和异性,并探索不同的设计选择,即与规模变异,与规模变异性相比,如何影响规模变异性,我们首先显示两个先前提议的规模的频道网络设计并不十分概括到在培训中不存在的尺度。我们提出的规模变异性模式是新型的频道结构 。这个规模变异性网络在甚大的F级网络中显示甚大的图像类型中,而甚小的分辨率则显示比甚大的图像范围。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年8月11日
Arxiv
0+阅读 · 2021年8月7日
Arxiv
8+阅读 · 2021年2月19日
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Top
微信扫码咨询专知VIP会员