Differential privacy is a rigorous mathematical framework for evaluating and protecting data privacy. In most existing studies, there is a vulnerable assumption that records in a dataset are independent when differential privacy is applied. However, in real-world datasets, records are likely to be correlated, which may lead to unexpected data leakage. In this survey, we investigate the issue of privacy loss due to data correlation under differential privacy models. Roughly, we classify existing literature into three lines: 1) using parameters to describe data correlation in differential privacy, 2) using models to describe data correlation in differential privacy, and 3) describing data correlation based on the framework of Pufferfish. Firstly, a detailed example is given to illustrate the issue of privacy leakage on correlated data in real scenes. Then our main work is to analyze and compare these methods, and evaluate situations that these diverse studies are applied. Finally, we propose some future challenges on correlated differential privacy.
翻译:不同隐私是评估和保护数据隐私的严格数学框架。在大多数现有研究中,有一种脆弱的假设是,在使用不同隐私时,数据集中的记录是独立的。然而,在现实世界的数据集中,记录可能相互关联,可能导致意外数据泄漏。在本次调查中,我们调查了不同隐私模式下数据相关性造成的隐私损失问题。我们粗略地将现有文献分为三行:1)使用参数来描述不同隐私的数据相关性,2)使用模型来描述差异隐私的数据相关性,3)根据普费鱼框架描述数据相关性。首先,举一个详细的例子来说明相关数据在真实场景中的隐私渗漏问题。然后,我们的主要工作是分析和比较这些方法,并评估应用这些不同研究的情况。最后,我们提出了有关相关差异隐私的未来挑战。