We consider a network consisting of $n$ nodes that aim to track a continually updating process or event. To disseminate updates about the event to the network, two sources are available, such that information obtained from one source is considered more reliable than the other source. The nodes wish to have access to information about the event that is not only latest but also more reliable, and prefer a reliable packet over an unreliable packet even when the former is a bit outdated with respect to the latter. We study how such preference affects the fraction of users with reliable information in the network and their version age of information. We derive the analytical equations to characterize the two quantities, long-term expected fraction of nodes with reliable packets and their long-term expected version age using stochastic hybrid systems (SHS) modelling and study their properties. We also compare these results with the case where nodes give more preference to freshness of information than its reliability. Finally we show simulation results to verify the theoretical results and shed further light on behavior of above quantities with respect to dependent variables.


翻译:我们考虑一个由美元节点组成的网络,目的是跟踪不断更新的过程或事件。为了向网络传播有关该事件的最新消息,有两个来源,因此,从一个来源获得的信息被认为比另一个来源更可靠。节点希望能够获得关于该事件的信息,不仅最新,而且更可靠,并且希望有一个可靠的包,而不是一个不可靠的包,即使前者对后者而言稍嫌过时。我们研究这种偏好如何影响网络中掌握可靠信息的用户比例及其版本信息年龄。我们从分析方程式中得出分析方程式,以便用随机混合混合系统建模和研究其特性,对两个数量、长期预期部分的可靠组合及其长期预期版本年龄进行定性。我们还将这些结果与这样的案例进行比较,即节点更偏重于信息的更新而不是可靠性。最后,我们展示模拟结果,以核实理论结果,并进一步说明在依赖变量方面超过数量的行为。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月26日
Arxiv
0+阅读 · 2023年3月26日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员