The non-convex quadratic orogramming problem and the non-monotone linear complementarity problem are NP-complete problems. In this paper we first show taht the inverse problem of determinning a KKT point of the non-convex quadratic programming problem is polynomial. We then show that the inverse problems of non-monotone linear complementarity problem are polynomial solvable in some cases, and in another case is NP-hard. Therefore we solve an open question raised by Heuberger on inverse NP-hard problems and prove that CoNP=NP.
翻译:非convex二次曲线或线性互补问题和非monoone线性互补问题是NP-完整的问题。在本文中,我们首先展示了确定非convex二次曲线编程问题KKT点的反面问题是多元的。然后我们展示了非monoone线性互补性问题的反面问题在某些情况下是可以解决的,而在另一种情况下则是NP-硬的。因此,我们解决了Heuberger提出的一个未决问题,即NP-硬的问题,并证明CONP=NP。