This paper presents a new technique for disturbing the algebraic structure of linear codes in code-based cryptography. This is a new attempt to exploit Gabidulin codes in the McEliece setting and almost all the previous cryptosystems of this type have been completely or partially broken. To be specific, we introduce the so-called semilinear transformation in coding theory, which is defined through an $\mathbb{F}_q$-linear automorphism of $\mathbb{F}_{q^m}$, then apply them to construct a public key encryption scheme. Our analysis shows that this scheme can resist all the existing distinguisher attacks, such as Overbeck's attack and Coggia-Couvreur attack. Meanwhile, we endow the underlying Gabidulin code with the so-called partial cyclic structure to reduce the public key size. Compared with some other code-based cryptosystems, our proposal has a much more compact representation of public keys. For instance, 2592 bytes are enough for our proposal to achieve the security of 256 bits, almost 403 times smaller than that of Classic McEliece entering the third round of the NIST PQC project.
翻译:本文介绍了一种干扰代码加密法中线性代码代数结构的新方法。 这是一次尝试, 试图在麦克利叶斯设置中利用加比杜林代码, 而几乎所有以前这类加密系统都完全或部分地被打破。 具体地说, 我们在编码理论中引入所谓的半线性转换, 其定义是 $\ mathbb{F ⁇ qq$- 线性自动结构, 然后用它来构建公用钥匙加密计划。 我们的分析表明, 这个计划可以抵制所有现有的区分器袭击, 如 Overbeck 袭击和 Coggia- Couvreur 袭击。 同时, 我们把加比杜林 基本代码与所谓的部分循环结构联系起来, 以缩小公用钥匙的大小。 与其他基于代码的加密系统相比, 我们的提案对公用钥匙的描述要紧得多。 例如, 2 592 字节足以让我们的建议实现256 位的安全, 几乎403 倍于 NIST 类中小于 NISC 的 NC 级工程。